\qquad

Quiz 9

Question 1. (10 pts)

(a) Determine whether the function $f(z)=z \bar{z}+\bar{z}$ is analytic on \mathbb{C}, where $z=x+i y$ and $\bar{z}=x-i y$.

Solution:

$$
f(z)=x^{2}+y^{2}+x-i y
$$

The real part is $u(x, y)=x^{2}+y^{2}+x$ and the imaginary part is $v(x, y)=-y$. So

$$
\frac{\partial u}{\partial x}=2 x+1, \quad \frac{\partial v}{\partial y}=-1
$$

Therefore

$$
\frac{\partial u}{\partial x} \neq \frac{\partial v}{\partial y}
$$

that is, one of the Cauchy-Riemann equations is not satisfied. So $f(z)$ is not entire.
(b) Determine whether the function $g(z)=e^{\bar{z}}$ is analytic on \mathbb{C}, where $\bar{z}=x-i y$.

Solution: Similarly, the real part is $u(x, y)=e^{x} \cos y$ and the imaginary part is $v(x, y)=-e^{x} \sin y$.

$$
\frac{\partial u}{\partial x}=e^{x} \cos y, \quad \frac{\partial v}{\partial y}=-e^{x} \cos y
$$

Again,

$$
\frac{\partial u}{\partial x} \neq \frac{\partial v}{\partial y}
$$

that is, one of the Cauchy-Riemann equations is not satisfied. So $g(z)$ is not entire.

Question 2. (10 pts)

Evaluate the following integrals.
(a)

$$
\int_{C}(z+1) d z
$$

where C is the curve $y=2 x^{3}-\sin (\pi x)+1$ joining the points $(0,1)$ and $(1,3)$.
Solution: Notice that $(z+1)$ is entire and its domain is \mathbb{C}, which is simply connected.

$$
F(z)=\frac{z^{2}}{2}+z
$$

is an antiderivative of $z+1$. So we have

$$
\int_{C}(z+1) d z=F(1+3 i)-F(i)=\frac{(1+3 i)^{2}}{2}+(1+3 i)-\left(\frac{i^{2}}{2}+i\right)=\cdots
$$

(b)

$$
\int_{C} \frac{z}{z^{2}+4} d z
$$

where C is the rectangle with vertices at $\pm 2,2+i$ and $-2+i$.
Solution: Notice that

$$
\frac{z}{z^{2}+4}=\frac{z}{(z+2 i)(z-2 i)}
$$

which is analytic on the solid rectangle enclosed by C. So we can apply Cauchy's theorem and conclude that

$$
\int_{C} \frac{z}{z^{2}+4} d z=0
$$

